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Abstract: This paper presents a new approach to reconstruct the plant output of linear time-invariant
systems in the case where the available output measurement is quantized. By fitting the quantized
measurement data with polynomials in a moving horizon manner, a smooth approximation of plant
output is obtained via solving a convex optimization problem. Applying the signal to an observer, the
plant output is reconstructed by taking account of the plant dynamics. It is guaranteed that the error
between the true and the reconstructed output is bounded. Experimental validation is given by using
a DC motor positioning system. It turns out that the proposed approach achieves small reconstruction
error and accurate tracking control. In addition, the approach yields a smooth reconstruction signal so
that the plant input is well behaved (or smooth) even if PID controller is employed for the plant subject
to quantized output measurement.
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1. INTRODUCTION

Quantization in I/O signals is an inherent feature in many
control systems including digital systems, networked ones, low
resolution sensor/actuator systems, and so on. In some cases,
the quantization error is substantially small compared to system
noise or the desired position accuracy. However, this is not
always the case. For instance, in most motion servo control
systems, the optical encoders provide quantized measurement
output and the quantization error may not be negligible. In
this case, when the quantized measurement is used as the
control signal directly, the quantization error will degrade the
control accuracy or cause self-excited oscillations (Franklin
et al. (1998)).

There is much literature focuses on understanding and sup-
pression of quantization effects, see, e.g., Widrow et al.
(1996), Zhang and Fu (2008). A simple classical approach to
analyze and suppress the effects caused by quantization is to
treat the quantization error as a bounded uncertainty and design
a controller by applying robustness analysis tools (Fu (2005)).
However, these methods commonly consider the worst-case
conditions and it is difficult to find a nonconservative controller.
Several researchers also propose some methods to estimate
the system state based on the assumption that the quantization
error is Gaussian noise. For instance, Van et al. (2004) present
an adaptive Kalman filter to suppress the sensor quantization
effects and demonstrate its effectiveness by the simulations.
However, quantization behaves as highly colored noise and
these methods are not always effective. Several numerical meth-
ods are also proposed to estimate the quantization error. Hirata
and Kidokoro (2009) propose a quantization error estimator
based on the least square method. However, the method is
based on the assumption that the input disturbance is constant,
which may be too restrictive in some cases. Besides, several

approaches based on observer theory have been extensively
studied, see Zhang and Fu (2008), Sur and Paden (1998), in
which extra useful information is extracted from the quantized
model and used to make a better estimation. Zhang and Fu
(2008) propose a reset state estimator based on the information
that the actual output is known exactly at the mid-point of the
two consecutive quantizer levels; and Sur and Paden (1998) also
present a projection algorithm to estimate the plant state based
on the similar information. However, these methods commonly
do not take account of the input disturbance and noise, which
may not practical in real situation.

Due to the intrinsic feature of quantization, the error between
the plant output and its quantized measurement is always
bounded by the quantization level. Moreover, it is possible to
get more precise information on the current true output from
a series of past quantized measurement by taking account of
the plant dynamics. This observation motivates us to consider
a reconstruction of the plant output more precisely from the
quantized measurement. In addition, it would be useful to ob-
tain the smooth output signal, because it will yield the smooth
plant input in the feedback systems even if the controller con-
tains differential operation (such as PID). Therefore, a moving
horizon curve fitting method is employed in this paper to take
account of the smooth output reconstruction.

This paper is organized as follows. Section 2 introduces the sys-
tem model and describes the problem settings. In section 3, the
moving horizon polynomial fitting approach is presented, and
the output reconstruction error is analyzed. Section 4 demon-
strates the effectiveness of the proposed approach by using
a DC motor positioning system. Finally, the conclusions are
summarized in Section 5.
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Fig. 1. Quantization characteristic; ∆: quantization level.

2. SYSTEM DESCRIPTION

Consider the linear time-invariant plant given by

ẋ(t) = Ax(t) + Bu(t) + w(t), x(0) = 0, (1)

y(t) =Cx(t), (2)

yv(t) = y(t) + v(t), (3)

yq(t) = Q(yv(t)), (4)

where A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n are constant system
matrices, and (C, A) is an observable pair. x(t), y(t), yv(t) and
yq(t) are the state vector, the actual output, the corrupted output
and the quantized measurement, respectively. v(t) ∈ R and
w(t) ∈ Rn are the measurement noise and the input disturbance,
respectively, which are assumed to be zero-mean and bounded
by ‖w‖∞ ≤ γ, ‖v‖∞ ≤ δ for known γ and δ. The function Q(·)
represents the uniform quantizer defined by

Q(yv) = i · ∆, yv ∈ ((i − 0.5)∆, (i + 0.5)∆], (5)

where i ∈ Z, ∆ > 0 denotes the quantization level. We also
assume that the quantization range is infinite. The relationship
between yv and yq is shown in Fig. 1. In practical motion control
systems, the quantizer (5) can be adopted to model the position
sensor with quantization such as an incremental encoder, where
∆ is also referred to as positioning resolution.

Due to the measurement noise v(t), the difference between plant
output y(t) and the measured quantized output yq(t), which is
denoted by ξ(t) := y(t) − yq(t), is bounded by

|ξ(t)| ≤
∆

2
+ δ. (6)

When the quantization level is large compared to the required
specifications, the control performance could be degraded badly
if the quantized measurement is directly used as the feedback
signal. In addition, the plant input may exhibit wild behavior
when the controller is high gain or has a derivative term.
Therefore, a smooth, precise estimate of y(t) would be preferred
in practice. One of the most common ways to cope with the
quantized measurement is to employ an observer and use its
output instead of yq itself, which is given by

˙̂x(t) = Ax̂(t) + Bu(t) + L(yq(t) − ŷ(t)), (7)

ŷ(t) =Cx̂(t), (8)

where x̂ and ŷ are the estimated state and output, respectively,
and L ∈ Rn×1 is the observer gain. However, it is often the

case that it does not work satisfactorily especially when the
quantization level ∆ is large. This motivates us to develop a
new way to reconstruct y(t) more precisely, which is outlined
as follows:

First, we produce the smooth output estimate ȳ by taking
account of the following three points:

(a) It is possible to get more precise information on y(t) from
the past quantized measurement series yq(τ) (τ ∈ [t−h t]),
where h is the given horizon;

(b) The quantization error is bounded by (6);
(c) The true output y(t) should be smooth and band limited

due to the plant dynamics.

Then, we use ȳ instead of yq(t) in (7).

In the next section, we will present a moving horizon polyno-
mial fitting approach, based on observer technique and convex
optimization, to obtain a smooth reconstruction of the plant
output by taking account of (a), (b) and (c).

3. MOVING HORIZON POLYNOMIAL FITTING
APPROACH

In this section, firstly, a moving horizon polynomial fitting
approach is presented to reconstruct the plant output. Then,
we analyze the reconstruction error and show that the error is
guaranteed to be bounded.

3.1 Polynomial fitting method

At first, we consider to fit the quantized measurement yq(t) in
an interval, denoted by [tk − h tk] (tk is the current time and h is
a fixed horizon), by using the polynomial

gk(t) = α1 + α2t + · · · + αmtm−1, t ∈ [tk − h tk], (9)

where α1 α2 · · · αm is the coefficients to be determined, and m
is the dimension of the polynomial. The polynomial can also be
regarded as an approximate signal of plant output in [tk − h tk].
We handle this fitting problem by the following two steps:

• Sample p data from the quantized measurement yq(t) in
[tk − h tk] with a fixed sampling period Ts (so that the
fixed horizon can be set as h := (p − 1)Ts);
• Form the vector of errors as follows:

ν =
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where i = p− 1, p− 2, · · · , 0, and minimize it via ℓ2-norm

minimize
α

: ‖ν‖2 (10)

with variables α = [α1 α2 · · · αm]T .

The problem (10) is to minimize the error between the polyno-
mial and sampled data at every sampling time in [tk − h tk] via
ℓ2-norm. It can be expressed as

minimize
α

: ‖ν‖2 = ‖T (tk)α − b‖2. (11)

with variable α, where T (tk)i j = (tk − (p − i)Ts)
j−1, bi = yq(tk −

(p − i)Ts), i = 1, 2, · · · , p, j = 1, · · · , m. α can be calculated if
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this problem is solved. In general, high-degree high-dimension
polynomial function can lead to erroneous fitting, such as that
it can arouse overshoot and swing through wild oscillations
(G. Strang (1986)). Therefore, we consider to set a proper high
dimension for polynomial (9) and use some heuristics to reduce
the dimension automatically, namely, take some function on α
to get a sparse solution. Since ℓ1-norm puts relatively larger
emphasis on small residuals and can get a sparse solution (Boyd
and Vandenberghe (2004)), we adopt ℓ1-norm here and the
fitting problem is reformed as

minimize
α

: ‖T (tk)α − b‖2 + η‖α‖1, (12)

with variable α ∈ Rm, where η is the weighting factor.

3.2 Moving horizon curve fitting

At time tk, yq(tk) is sampled from the quantized output, and
the polynomial (9) is determined by solving the problem (12).
As we described above, the polynomial can be regarded as an
approximate signal of the plant output in the interval [tk −h tk].
Therefore, the approximation value of the plant output at tk,
denoted by ȳ(tk), is calculated by

ȳ(tk) = gk(tk). (13)

On the real-time calculation, when the current time tk is up-
dated, say, from tk to tk+1 according with a sampling period
Ts, a new quantized measurement yq(tk+1) is sampled as well
as the matrix T (tk) and vector b in problem (12) are renewed,
a new polynomial gk+1(t) will be calculated again (in the new
internal [tk+1 − h tk+1]). The immediate approximation value of
the plant output at tk+1 is determined by ȳ(tk+1) = gk+1(tk+1). In
the case of k ≤ p, we set yq(k − i) = 0 for i = k, k + 1, · · · , p
as the initialization. By doing this, a discrete signal ȳ(ti) can be
obtained by successively repeating the fitting procedures and
solving (13). The sampling period Ts is assumed to be small,
the signal ȳ(ti) (i = 1, 2, · · · ) therefore can be regarded as a
continuous signal, which is denoted by ȳ(t) for the sake of
convenience.

In order to improve the approximate accuracy between ȳ(t)
and plant output y(t), several constraint conditions of the prob-
lem (12) is considered here. As described in Section 2, the
difference between the plant output and the quantized output
is always bounded according to (6). Therefore, the constraint
condition

|gk(tk) − yq(tk)| <
∆

2
+ δ (14)

can be added to the problem (12). In addition, in order to obtain
a smooth approximate signal ȳ(t), the following two conditions

gk(tk−1) = ȳ(tk−1), (15)

ġk(tk−1) = ˙̄y(tk−1). (16)

where ġk(tk−1) is the slope of the polynomial (9) at time index
tk−1, is also considered. These conditions imply that ȳ(tk−1) and
ȳ(tk) are smoothly connected via polynomial gk(t). However,
the approximate accuracy may be degraded if the new approxi-
mate value ȳ(tk) is determined based on last approximate value
ȳ(tk−1). Therefore, we employ the observer

˙̂x(t) = Ax̂(t) + Bu(t) + L(ȳ(t) − ŷ(t)) (17)

ŷ(t) =Cx̂ (18)

Fig. 2. Block diagram of output reconstruction scheme. ŷ is
regarded as the reconstruction signal of actual output y.

where L ∈ Rn×1 is the observer gain which is designed to
stabilize A − LC, to estimate the plant state, and the following
conditions

ġk(tk−1) =CAx̂(tk−1) +CBu(tk−1) (19)

gk(tk−1) =Cx̂(tk−1) (20)

are used instead of (15) (16) to make sure that ȳ(tk) and ȳ(tk−1)
are smoothly connected.

From above, we can organize the polynomial fitting problem as

minimize
α

: ‖T (tk)α − b‖2 + η‖α‖1 (21)

subject to:

(14), (19), (20)

with variable α ∈ Rm. It is obvious that the objective function
and the inequality constraint function (left part of (14)) are
convex, and the equality constraint functions (left parts of
(19), (20)) are affine. Therefore, the minimization problem is
a convex optimization problem and can be solved efficiently.
Note that the three constraint conditions are independent with
each other, so that the problem is feasible if the polynomial (9)
has the dimension not less than 3 (m ≥ 3). When the problem
(21) is solved, the approximate signal ȳ(t), which is used by
the observer (17), can be calculated by (13). We regard ŷ(t)
obtained by the observer as the reconstruction signal of y(t).
The block diagram of the reconstruction scheme is shown in
Fig. 2.

3.3 Reconstruction Error Analysis

Finally, we will analyze how ”big” the reconstruction error is
when the proposed approach is applied. For convenience, the
reconstruction error is defined by

er(t) := y(t) − ŷ(t).

In addition, we analyze the error on continuous-time series by
assuming that the sampling period is small.

From the inequalities (14) and (6), we know that the difference
between the approximation signal ȳ(t) and the plant output y(t),
denoted by

ζ(t) := ȳ(t) − y(t), (22)

is bounded by
|ζ(t)| < ∆ + 2δ. (23)

Describe the state estimate error as

ex(t) := x(t) − x̂(t), (24)

and thus, subtracting the equation (17) from the plant (1)
derives the state error system with the dynamic equation

{

ėx(t) = Ãex(t) + w(t) − Lζ(t),
er(t) = Cex(t)

(25)
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where Ã = A − LC, which is stable. This error system can be
divided into following two subsystems

Gw :

{

ėx1(t) = Ãex1(t) + w(t),
er1(t) = Cex1(t)

(26)

Gζ :

{

ėx2(t) = Ãex2(t) − Lζ(t),
er2(t) = Cex2(t)

(27)

with ex(t) = ex1(t) + ex2(t) and er(t) = er1(t) + er2(t).

Then we have

er1(t) =

∫ t

0

gw(t − τ)w(τ)dτ, (28)

er2(t) =

∫ t

0

gζ(t − τ)ζ(τ)dτ (29)

where gw(t) and gζ(t) are the convolution kernel. Since w(t) is
assumed as ‖w(t)‖∞ ≤ γ, thus the error er1(t) is bounded by

‖er1(t)‖ = ‖

∫ t

0

gw(t − τ)w(τ)dτ‖ ≤

∫ t

0

‖gw(t − τ)w(τ)‖dτ

≤

∫ t

0

‖gw(τ)‖dτ ‖w‖∞ ≤

∫ t

0

‖gw(τ)‖dτ γ.

Therefore, ‖er1‖∞ ≤
∫ ∞

0
‖gw(τ)‖dτ γ. Using the theorem 4.5

of K. Zhou’s book (1995), we can have
∫ ∞

0
‖gw(τ)‖dτ ≤

2
∑n

i=1 σwi
, where σw1

≥ σw2
≥ · · · ≥ σwn

≥ 0 are the Hankel
singular values of subsystem Gw. And thus the inequality

‖er1‖∞ ≤ 2γ

n
∑

i=1

σwi
,

is obtained. Similarly, we can have

‖er2‖∞ ≤ 2(∆ + 2δ)

n
∑

i=1

σζi ,

where σζ1 ≥ σζ2 ≥ · · · ≥ σζn ≥ 0 are the Hankel singular values
of subsystem Gζ . Therefore, the following inequalities

‖er(t)‖∞ ≤ ‖er1‖∞ + ‖er2‖∞

≤ 2γ

n
∑

i=1

σwi
+ 2(∆ + 2δ)

n
∑

i=1

σζi

are obtained, which means that the reconstruction error is
guaranteed to be bounded.

4. EXPERIMENTS

This section demonstrates the application of the moving hori-
zon polynomial fitting approach to a DC motor control system
with an optical encoder of 22 µm resolution. Fig. 3 shows the
experimental setup. Experimental results are shown to verify
the effectiveness of the proposed approach (MHPFA) over the
standard state estimator (SSE) without fitting process.

The model of DC motor is obtained by an identification exper-
iment, which is described by

[

ẋ
ẍ

]

=

[

0 1
0 −69.623

] [

x
ẋ

]

+

[

0
9.2543

]

u,

y =
[

1 0
]

[

x
ẋ

]

.

Fig. 3. Experimental setup.

Fig. 4. Block diagram of DC motor control system: y is mea-
sured by the optical encoder, a software quantizer is intro-
duced to simulate the low-resolution encoder, the motor
input is limited in [−1 1]V . Case 1: the standard state
estimator is used; Case 2: the proposed method is used.

where x is the position and ẋ is the velocity. The controller is
given by

K(s) = kp + kd

s

0.004s + 1
+ ki

1

s
(30)

where kp = 800, kd = 5, ki = 50. Note that the controller
owns a high gain and a derivative term. The block diagram of
the LTI control system is shown in Fig. 4. The input of the
motor is limited in [−1 1]V. The position signal measured
by the optical encoder is regarded as the actual position y.
To verify the effectiveness the proposed approach, a software
quantizer is introduced to simulate a low resolution encoder.
The quantized output yq together with the control input u are
then used as the inputs of MHPFA and SSE. For comparison,
the reconstruction output ŷ from SSE (Case 1) and MHPFA
(Case 2) are respectively used as the feedback signals. The
sampling period of the control system is set as Ts = 1 ms.

In the setup, the quantization level is set as ∆ = 3 cm. The noise
v(t) is set as v ≤ δ, where δ = 0.05 cm. The observer gain L is
calculated by properly placing the poles at −10, −12 (the same
with the SSE method). In addition, the initial value of matrix
T and the vector b in (21) is set as T (0) = 0 and b = 0, the
fitting data number p, the dimension of the polynomial m, and
the weighting factor η is properly set as p = 30, m = 5, and
η = 1 × 10−3, respectively.

For the sake of comparison, the reconstruction error er and
position tracking error Ec are respectively defined as

er = y − ŷ, (31)

Ec = r − y. (32)

The controller is modeled by a Simulink block, and the C
code of the minimization problem (21) is generated by using
CVXGEN (J. Mattingley et al. (2010)). In the case of p = 30
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Fig. 5. Comparison between reference r and plant output y.
Solid lines: reference input, Dashed lines: the plant output
obtained by SSE and MHPFA, respectively.

Fig. 6. The comparison of reconstruction error and posi-
tion tracking error caused by MHPFA approach and
SSE method. Solid lines: the error obtained by MHPFA,
Dashed lines: the error obtained by SSE.

and m = 5, the computational time of solving the problem (21)
can be as small as 60 µs (Intel Core 2 Duo CPU L7100 @ 1.20
GHz with 2 GB of memory), which means that it is sufficient to
solve the minimization problem during the sampling period.

The reference input r is set as the sinusoidal signal r =
10sin t cm and the experiment is performed. The experimental
results are shown in Fig. 5 ∼ 7. Fig. 5 shows the comparison
between reference input r(t) and plant output y(t) achieved
by MHPFA and SSE. The reconstruction error and position
tracking error caused by MHPFA and SSE are shown in Fig. 6.
It is obvious that MHPFA can achieve a better tracking accuracy
and obtain a good plant output reconstruction. In addition, by
using the proposed approach, a smooth plant input is achieved
even if the controller owns a high gain and a derivative term.
Fig. 7 shows the comparison of plant input obtained by the
MHPFA approach and SSE method. We know that the motor
behaves more softly when the proposed approach is used. The
maximum amplitudes and RMS of the reconstruction error and
the position tracking error Ec in one period (t = 0 [s] to
t = 2π [s]) are shown in Table 1 and Table 2. It is observed that
the maximum of reconstruction error and tracking error versus
quantization level are below 10%. Therefore, the quantization
effects are shown to be suppressed by the proposed approach.

Fig. 7. The comparison of input u(t) of MHPFA approach and
SSE method.

Table 1. Maximum Amplitude and RMS of recon-
struction error er

SSE MHPFA

max err [cm] 2.93 0.16

RMS [cm] 1.30 0.071

max err/∆ 97.7 % 5.3 %

Table 2. Maximum Amplitude and RMS of posi-
tion tracking error Ec

SSE MHPFA

max err [cm] 2.39 0.21

RMS [cm] 1.24 0.11

max err/∆ 79.7 % 7.0 %

Fig. 8. The comparison of reference and plant output obtained
by MHPFA and SSE in the case that reference input is
switched to triangle wave at t = 11 [s]. Solid lines:
reference input, Dashed lines: the plant output obtained
by SSE and MHPFA, respectively.

To verify the robustness of the proposed approach against the
reference input, we switch the reference input from sinusoidal
signal r(t) = 10sin (t) to triangle wave signal at t = 11 [s].
The experiment results are shown in Fig. 8 ∼ 10. Fig. 8
shows the comparison between reference input r(t) and plant
output y(t) achieved by MHPFA and SSE. The reconstruction
error and position tracking error caused by MHPFA and SSE
are shown in Fig. 9. Besides, the comparison of plant input
obtained by the MHPFA approach and SSE method is shown
in 10. It is observed that the reconstruction performance is not
deteriorated when the reference signal is switched. Therefore,
the effectiveness of the proposed approach is verified.
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Fig. 9. The comparison of reconstruction error and position
tracking error obtained by MHPFA and SSE in the case
that reference input is switched to triangle wave at t =
11 [s]. Solid lines: the error obtained by MHPFA, Dashed
lines: the error obtained by SSE.

Fig. 10. The comparison of input u(t) between MHPFA and
SSA in the case that the reference is switched to triangle
wave at t = 11 [s].

5. CONCLUSION

We have proposed a new method to reconstruct the plant out-
put of SISO linear time-invariant systems from the quantized
measurement. It exploits the moving horizon polynomial fitting
approach with some additional constraints, which takes account
of the quantization level and smoothness of the estimated out-
put. The approach is based on a standard observer and con-
vex optimization technique, and therefore it is computationally
tractable. The experimental results are given to demonstrate the
effectiveness of the proposed approach. Note that the approach
does not depend on any specific control structures, so that it
could be combined with any type of control methods.
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